Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming
نویسندگان
چکیده
Unit commitment (UC) is a key operational problem in power systems used to determine an optimal daily or weekly generation commitment schedule. Incorporating uncertainty in this already difficult mixed-integer optimization problem introduces significant computational challenges. Most existing stochastic UC models consider either a two-stage decision structure, where the commitment schedule for the entire planning horizon is decided before the uncertainty is realized, or a multistage stochastic programming model with simplistic stochastic processes to ensure tractability. We propose a new type of decomposition algorithm based on Stochastic Dual Dynamic Integer Programming (SDDiP) to solve a dynamic programming formulation of a multistage stochastic unit commitment (MSUC) problem. We propose a variety of computational enhancements to adapt SDDiP to MSUC, and conduct extensive computational experiments to demonstrate that the proposed method is able to handle elaborate stochastic processes and can solve MSUCs with a huge number of scenarios that are impossible to handle by existing methods.
منابع مشابه
A Two Stage Stochastic Programming Model of the Price Decision Problem in the Dual-channel Closed-loop Supply Chain
In this paper, we propose a new model for designing integrated forward/reverse logistics based on pricing policy in direct and indirect sales channel. The proposed model includes producers, disposal center, distributers and final customers. We assumed that the location of final customers is fixed. First, a deterministic mixed integer linear programming model is developed for integrated logistic...
متن کاملNested Decomposition of Multistage Stochastic Integer Programs with Binary State Variables
Multistage stochastic integer programming (MSIP) combines the difficulty of uncertainty, dynamics, and non-convexity, and constitutes a class of extremely challenging problems. A common formulation for these problems is a dynamic programming formulation involving nested cost-to-go functions. In the linear setting, the cost-to-go functions are convex polyhedral, and decomposition algorithms, suc...
متن کاملEnergy Scheduling in Power Market under Stochastic Dependence Structure
Since the emergence of power market, the target of power generating utilities has mainly switched from cost minimization to revenue maximization. They dispatch their power energy generation units in the uncertain environment of power market. As a result, multi-stage stochastic programming has been applied widely by many power generating agents as a suitable tool for dealing with self-scheduling...
متن کاملStochastic Dual Dynamic Integer Programming
Multistage stochastic integer programming (MSIP) combines the difficulty of uncertainty, dynamics, and non-convexity, and constitutes a class of extremely challenging problems. A common formulation for these problems is a dynamic programming formulation involving nested cost-to-go functions. In the linear setting, the cost-to-go functions are convex polyhedral, and decomposition algorithms, suc...
متن کاملA Defined Benefit Pension Fund ALM Model through Multistage Stochastic Programming
We consider an asset-liability management (ALM) problem for a defined benefit pension fund (PF). The PF manager is assumed to follow a maximal fund valuation problem facing an extended set of risk factors: due to the longevity of the PF members, the inflation affecting salaries in real terms and future incomes, interest rates and market factors affecting jointly the PF liability and asset p...
متن کامل